
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 265 (2003) 437–449

Investigation and modelling of damping in a plate with a
bonded porous layer

N. Daucheza,*, S. Sahraouia, N. Atallab

aLaboratoire d’Acoustique UMR CNRS 6613, Univ. du Maine, 72085 Le Mans cedex 9, France
bGAUS, Mechanical Engineering Department, Universit !e de Sherbrooke, Sherbrooke, Qu!e., Canada J1K 2R1

Received 25 November 1999; accepted 23 July 2002

Abstract

Behavior of a poro-elastic material bonded onto a vibrating plate is investigated in the low-frequency
range. From the analysis of dissipation mechanisms, a model accounting for damping added by the porous
layer on the plate is derived. This analysis is based on a 3-D finite element formulation including poro-
elastic elements based on Biot displacement theory. First, dissipated powers related to thermal, viscous and
viscoelastic dissipation are explicited. Then a generic configuration (simply-supported aluminium plate with
a bonded porous layer and mechanical excitation) is studied. Thermal dissipation is found negligible.
Viscous dissipation can be optimized as a function of airflow resistivity. It can be the major phenomenon
within soft materials, but for most foams viscoelastic dissipation is dominant. Consequently an equivalent
plate model is proposed. It includes shear in the porous layer and only viscoelasticity of the skeleton.
Excellent agreement is found with the full numerical model.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Porous materials like polymer foam and glass wool are widely used for noise control in several
engineering activities such as aeronautics and automotive industries. Their properties are two-
fold: sound absorption and damping of the nearby structure. Excited through the coupling with
the fluid [1] or directly by the structure when in contact with it [2], the skeleton participates in
damping through viscoelastic dissipation. In the literature, the efficiency of porous material is
shown in applications dealing with sound absorption, transmission loss of [3,4] or noise in
enclosure coupled with elastic panels [5,6]. Some are based on finite element calculations including
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poro-elastic elements [3,5]. In these studies damping effect is shown for various boundary
conditions and materials, but no general tendencies are drawn about the nature of dissipa-
tion. Other reports give analytical predictions [7,8] of the importance of viscous dissipation
induced by the vibration of the skeleton, but they are approximative and limited to 1-D or 2-D
applications.
The present analysis is based on a partition of dissipated and reactive powers in poro-elastic

media, as similarly proposed by Rasolofosaon [9]. In order to treat any 3-D structure, the
calculation relies on a 3-D finite element formulation [10] with poro-elastic elements based on Biot
displacement theory [11].
Well suited for low-frequency range analysis, this formulation has been validated for various

applications [10,12]. Note that a similar study can be done using the mixed displacement–pressure
ðu;PÞ formulation [13]. However, this latter formulation is not used here, since the presented work
has been initiated with the ðu;UÞ displacement model. Both formulations have been shown to be
equivalent [14]. However, the cost of ðu;UÞ formulation is higher since three fluid displacement
components are involved while the ðu;PÞ formulation relies on a single pressure degree of freedom
for the fluid phase.
A comparison of the different terms of dissipated power gives the relative importance of

dissipation mechanisms: viscous, thermal or viscoelastic. The analysis is performed on structures
comprising a simply-supported plate associated with a porous layer excited by a point force
(Fig. 1). The influence of its thickness, stiffness and airflow resistivity is studied. The goal is to
determine major dissipation mechanisms in order to derive a simplified model of this two- layered
structure. This model gives the characteristics of an equivalent plate accounting for mass, stiffness
and viscoelastic damping added on the plate. Well suited for low-frequency analysis, this model
provides an efficient alternative to the full Biot model in terms of reduction of memory
requirement and computation time.
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Fig. 1. Simply-supported plate with a bonded porous layer and mechanical excitation.
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2. Power partition

The discretized motion equation of the two-layer system is given by Panneton and
Atalla [10]

½Ze� 0

0 ½Zp�

" # fwg

u

U

( )
8>><
>>:

9>>=
>>; ¼ fFg; ð1Þ

where ½Ze� and ½Zp� are respectively the impedance matrix related to the elastic and poro-elastic
media. fFg is the vector of nodal forces , applied to the elastic and poro-elastic media. fwg; f

u

U
g

are the complex amplitude of the nodal displacements of the plate, the skeleton and the air
comprised in the pores respectively. In the case where the porous material is bonded onto the
plate, there is a continuity of the displacements at the interface

u ¼ w; Un ¼ un; ð2Þ

where subscript n denotes normal displacement. Tangential fluid displacement is not affected by
continuity relationships at the interface. These linear relationships are applied by multiplication
with a contraction matrix.
Harmonic time dependence of the form ejot is assumed so that instantaneous quantities are

expressed as

aðtÞ ¼ RðaejwtÞ; ð3Þ

where a is complex amplitude and R denotes real part. Instantaneous input power PðtÞ of the
discretized system is the product of the instantaneous velocities by the instantaneous input
forces FðtÞ;

PðtÞ ¼ / ’wðtÞ; ’uðtÞ; ’UðtÞSfFðtÞg; ð4Þ

where symbols /S; f g and : denote respectively line and column vector, and time derivation. This
instantaneous power can be decomposed in two components related to power absorbed by the
structure and energy exchanged between the excitation and the structure, such as

PðtÞ ¼ Dð1þ cos 2ðotÞÞ þ R sin 2ðotÞ: ð5Þ

The mean power dissipated during one cycle D and the amplitude of the reactive power R derive
from the complex power P; given by

P ¼ 1
2
jo/wn; un;UnSfFg; ¼ D þ jR; ð6; 7Þ

where * denotes a complex conjugate quantity. Using Eq. (1), complex power can be rewritten in
the form
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depending only on the uncoupled impedance matrix, and on the solution of the global system
accounting for interface continuity. For the plate, impedance matrix

½Ze� ¼ ½Ke� 	 o2½Me�; ð9Þ

comprises a real mass matrix ½Me� and a complex stiffness matrix ½Ke� accounting for various loss
phenomena, such as structural dissipation, acoustic radiation and loss through boundary
conditions. The impedance matrix of the poro-elastic media is given by Panneton and Atalla [10]

½Zp� ¼ ½Kp� þ jo½Cp� 	 o2½Mp�: ð10Þ

This matrix comprises a real mass matrix ½Mp�; a complex viscous loss matrix ½Cp� and a complex
stiffness matrix

½Kp� ¼
½Kss� ½Ksf �T

½Ksf � ½Kff �

" #
; ð11Þ

where ½Kss� is the complex stiffness matrix of the solid phase, accounting for structural dissipation.
½Ksf � and ½Kff � are complex matrix related respectively to elastic coupling and bulk modulus of the
fluid phase. They include also thermal losses from fluid to skeleton. Coupling, viscous and thermal
losses are a function of f porosity, aN tortuosity, s air flow resistivity, L and L0 viscous
and thermal characteristic lengths, respectively, according to Johnson–Allard–Lafarge theory
[11,15–17]. Relations between low- and high-frequency effects are governed by shape factors. The
viscous shape factor M is defined by

M ¼ 8maN=sfL2; ð12Þ

where m is the viscosity of the air. The thermal shape factor M 0 is defined by

M 0 ¼ 8k0
0=fL

2; ð13Þ

where k0
0 is the thermal permeability. This quantity is deduced from Eq. (13) assuming M 0 ¼ 1; as

in a cylindrical pore.
Using Eqs. (8)–(11), complex power can be split into several terms, such as

P ¼ Dke þ Dks þ Dkf þ Dcp þ jðRke þ Rkp þ Rme þ RmpÞ; ð14Þ

where Rke and Rkp are elastic reactive powers of the plate and porous media. Rme and Rmp are
inertial reactive powers of the plate and porous media. Dke; Dks; Dkf and Dcp are dissipated powers
related to initial damping of the plate, structural, thermal and viscous dissipations within the
porous material. Their expressions are

Rke ¼ 1
2
Iðjo/wnS½Ke�fwgÞ; Rkp ¼

1

2
I jo/un;UnS½Kp�
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( ) !
; ð15; 16Þ
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Dke ¼ 1
2
Rðjo/wnS½Ke�fwgÞ; Dks ¼ 1

2
Rðjo/unS½Kss�fugÞ; ð19; 20Þ
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2
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" #
u

U

( ) !
; ð21Þ

Dcp ¼ 1
2
R 	jo2/un;UnS½Cp�

u

U

( ) !
; ð22Þ

where I and R denote respectively imaginary and real parts.
A global loss factor Zg can be calculated for the whole structure. It is expressed as the ratio of

total dissipated power over the elastic reactive power of the structure

Zg ¼ ðDke þ ðDks þ Dkf þ DcpÞÞ=ðRke þ RkpÞ: ð23Þ

This expression is consistent with modal loss factor.

3. Dissipation mechanisms

Dissipation mechanisms are studied for a simply-supported aluminium plate with a bonded
academic porous layer. Continuity of displacement is insured between the plate and the porous
layer according to Eq. (2).
Along the other faces of the porous layer, skeleton and fluid displacements are not constrained:

this means that external fluid loading is neglected. This hypothesis, usually assumed for a heavy
structure immerged in a light fluid, might have an influence on the present conclusions [18,19].
However, plate–foam experimental tests [20] have shown good correlation between experiments
and numerical simulations with the above assumption.
The rectangular plate ð22 cm� 28 cmÞ is meshed by 13� 13 thin shell quadrangular elements.

Excitation is achieved by a normal point force on the plate, located at ð7:7 cm; 9:8 cmÞ: The
porous layer is meshed by 13� 13� 7 linear hexahedric elements. This mesh is suitable for the
present study, but could be reconsidered for a more critical application due to slow convergence of
linear poro-elastic elements [21].
Calculations performed for various porous materials and thicknesses show that only structural

and viscous dissipations are relevant. Thermal dissipation is always found to be less than 2% of
the total dissipation. This shows that the fluid is not significantly compressed: this is due firstly to
the nature of excitation that does not create a straight compression of the fluid in the pore like an
acoustical excitation would do, and secondly to the free boundary conditions of the porous layer
that do not constrain the fluid in a given volume.
The relative importance of structural and viscous dissipation is now analyzed by varying the

related parameters. Structural dissipation induced by the porous layer on the plate is a function of
the structural loss factor Z2 and Young’s modulus E2 of the skeleton. It is studied for two couples
ðE2; Z2Þ; including most of mineral wool or polymer foam characteristics: ðE2 ¼ 60 kPa; Z2 ¼
0:07Þ used for a soft material and ðE2 ¼ 400 kPa; Z2 ¼ 0:15Þ for a stiff and more dissipative
material. The aluminum plate properties are: thickness h1 ¼ 1 mm; Young’s modulus E1 ¼
69 GPa; Poisson ratio n1 ¼ 0:33 and density r1 ¼ 2778 kg=m3: The loss factor of the plate Z1 is set
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to 0.01 to account for various dissipation phenomena such as structural damping, acoustic
radiation and losses through boundary.
In the low-frequency range, viscous dissipation is mainly related to flow resistivity s of

the material. Its influence is determined from 103 to 108 N s m	4: Characteristic lengths vary
with resistivity so that the used material remains realistic: viscous shape factor M is
kept constant (Eq. (12)) and the ratio between thermal and viscous characteristic lengths is
fixed to 2.5. The other parameters are fixed and correspond to usual foam or glass wool
characteristics: porosity f=0.98, tortuosity aN ¼ 1:3; skeleton density r2 ¼ 40 kg=m3 and
Poisson ratio n2 ¼ 0: The influence of thickness h2 of the porous layer is also investigated, being
set to 2 or 5 cm:
Fig. 2(a) presents viscous dissipation relative to total dissipation, Dcp=ðDks þ Dkf þ DcpÞ; as a

function of flow resistivity, for the two thicknesses and materials. It is given for the first bending
mode ð65 Hzof11o68 HzÞ of the structure. An optimal value of flow resistivity appears for each
case. Its location tends to smaller flow resistivity when thickness increases. This is consistent with
the calculation of Okuno and Kingsbury [8], given for a sealed poro-elastic beam undergoing
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Fig. 2. Percentage of viscous dissipation relative to total dissipation in the porous layer (a), global loss factor of the

multilayer (b), as a function of flow resistivity for two materials: - -, 2 cm thick stiff material; F; 5 cm thick stiff

material; ?; 2 cm thick soft material; - - -, 5 cm thick soft material.
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bending deformation

sCfK0=2:5 h22fi; ð24Þ

where K0 is the bulk modulus of the air and f the frequency. Relative viscous damping increases
with the thickness. It reaches a maximum of 84% for the soft material, being the major dissipating
mechanism. However it is limited to 27% for the stiff material: structural damping is the major
dissipating mechanism.
Fig. 2(b) presents the global loss factor of the multilayer, Zg: For very low airflow resistivity,

this factor depends only on the structural damping and on the thickness of the porous layer. For a
thickness of 2 cm; only stiff polymer foam adds a significant amount of damping. For soft
material, damping becomes significant for a thicker layer and only where the viscous dissipation is
important: a maximum loss factor of 6% is then reached with 5 cm: However, according to
Okuno and Kingsbury [8], the optimized value of airflow resistivity depends on the frequency: it is
not suitable for a large frequency range.
The most reliable way to get damping in the low-frequency range is to optimize viscoelastic

dissipation with a most dissipative and stiff skeleton. In that case, the amount of added damping
is no more dependent on airflow resistivity. The airflow resistivity can then be optimized for other
purposes such as acoustic absorption.

4. Equivalent plate model

Viscoelastic dissipation is now assumed to be the major source of damping. In this context,
only the skeleton behavior is relevant. The porous layer can be considered as a monophasic
viscoelastic medium and characteristics of an equivalent plate to the two-layered structure
can be determined. Development of such an equivalent plate is of interest in reducing the
computational cost. Moreover, this model can be coupled with an acoustical admittance
model [22] when the porous layer is connected to a cavity: in such a case, both acoustical and
structural effects of the porous layer, on the cavity and on the elastic structure, are taken into
account respectively.
The geometry of the problem is described in Fig. 3. The two layers are characterized by Young’s

modulus E1 and E2; Poisson ratios n1 and n2; densities r1 and r2 and thicknesses h1 and h2:
Subscript 1 refers to the plate and 2 to the porous layer.
For pure bending deformation of the structure, the equivalent plate parameters can be

calculated from Ross–Kerwin–Ungar (RKU) theory [23] of multilayer plates. Total bending
rigidity D12 is simply the sum of bending rigidities D1 and D2 of the two layers related to the
neutral fiber of the plate,

D12 ¼ D1 þ D2; ð25Þ

where D1 and D2 are given in Appendix A by equations (A.3) and (A.4). The equivalent density is
given by

r12 ¼ ðr1h1 þ r2h2Þ=ðh1 þ h2Þ: ð26Þ
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Equivalent loss factor is given by the ratio of the imaginary and the real part of the total bending
rigidity D12: However and as expected RKU theory overestimates the equivalent loss factor in
comparison with numerical calculation, for a relatively thick layer (Fig. 4(b)). This confirms that
porous layer, past a certain thickness, do not exhibit a pure bending deformation.
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A more accurate model is achieved by taking into account shear strain in the porous layer
(Fig. 3). Hamilton’s principle is used to get the equation of motion of the two-layer plate.
Classical thin-plate theory is used for the plate. Only calculations related to the porous layer are

exposed. For the porous layer, displacement vector fugT ¼ /u; v;wS of a particle is assumed to be

uðx; y; z; tÞ ¼ 	z@w=@x 	 ðz 	 z1Þcx;

vðx; y; z; tÞ ¼ 	z@w=@y 	 ðz 	 z1Þcy; wðx; y; tÞ ¼ w; ð27Þ

where w is the deflection of the plate, cx and cy deviation angles due to shear strain (Fig. 3). The
components of the strain tensor fe2g

T ¼ /ex; ey; gxy; gxz; gyzS are

ex ¼ 	z@2w=@x2 	 ðz 	 z1Þ@cx=@x; ey ¼ 	z@2w=@y2 	 ðz 	 z1Þ@cy=@y;

gxy ¼ 	2z@2w=@x@y 	 ðz 	 z1Þð@cx=@y þ @cy=@xÞ; gxz ¼ 	cx; gyz ¼ 	cy: ð28Þ

Stress–strain relations are given by

fr2g ¼ ½H2�fe2g; ð29Þ

where fr2g ¼ /sx; sy; txy; txz; tyzS is the stress tensor and ½H2� is the viscoelastic tensor for
a bi-dimensional isotropic material

½H2� ¼
E2

1	 n22

1 n2
n2 1

ð1	 n2Þ=2

ð1	 n2Þ=2

ð1	 n2Þ=2

2
6666664

3
7777775
: ð30Þ

Strain energy V of the multilayer is the sum of bending strain energy of the plate, bending and
shear strain energies of the porous layer

V ¼ Vbending1 þ Vbending2 þ Vshear2 ; ð31Þ

where

Vb1 ¼
1

2

E1

1	 n21

Z
S

Z z1

	z1

/ex; ey; gxyS

1 n1
n1 1

ð1	 n1Þ=2

2
64

3
75

ex

ey

gxy

8><
>:

9>=
>; dx dy dz; ð32Þ

Vb2 ¼
1

2

E2

1	 n22

Z
S

Z z2

z1

/ex; ey; gxyS

1 n2
n2 1

ð1	 n2Þ=2

2
64

3
75

ex

ey

gxy

8><
>:

9>=
>; dx dy dz; ð33Þ

Vs2 ¼
1

2

Z
S

Z z2

z1

/gxz; gyzS
txz

tyz

( )
dx dy dz: ð34Þ

The kinetic energy of the system is given by

T ¼
1

2

Z
S

m12 ’w
2 dS; ð35Þ
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with the equivalent density

m12 ¼ r1h1 þ ðð1	 fÞrs þ fr0Þh2; ð36Þ

where f is the porosity, rs is the density of the solid comprising the skeleton and r0 is the density
of the air.
Applying Lagrange’s equations respectively to each variable, w; cx and cy; and summing the

equations related to cx and cy gives the two equations of motion

D1DDw þ D2DDw þ D4Dyþ m12@
2w=@t2 ¼ 0; ð37Þ

D3Dyþ D4DDw 	 C2y ¼ 0; ð38Þ

with y ¼ @cx=@x þ @cy=@y and D ¼ @2=@x2 þ @2=@y2; and where D3 and D4 are bending rigidities
given in Appendix A by Eqs. (A.5) and (A.6). For a steady state motion, w and y are assumed to
be of the form

wðx; y; tÞ ¼ w0 sinðkxxÞ sinðkyyÞ sinðotÞ; ð39Þ

yðx; y; tÞ ¼ y0 sinðkxxÞ sinðkyyÞ sinðotÞ; ð40Þ

where kx and ky are wavenumbers associated to the directions x and y: They are related to the
wavenumber k by

k2 ¼ k2
x þ k2

y: ð41Þ

If the plate is simply supported and a � b sized, its modes ðra; rbÞ correspond to

kx ¼ pra=a and ky ¼ prb=b; ð42Þ

where ra and rb are modal orders along x- and y-direction, respectively ðra > 1; rb > 1Þ: The
dispersion equation of the system (37)–(38) can then be written in the form

o2 ¼ k4ðD12=m12ÞCsðk2Þ; ð43Þ

where Csðk2Þ is the correction factor of the bending rigidity D12; accounting for shear, given by

Csðk2Þ ¼ 1	 D2
4k

2=D12ðD3k
2 þ C2Þ: ð44Þ

As Cs is less than 1, shear will lower the resonance frequencies of the system. Cs depends on the
wavenumber, thus on frequency. For a simply supported plate, Cs can be calculated for discrete
values of frequency, corresponding to natural frequencies of the plate, given by Eqs. (42) and (43).
However Cs can be expressed continuously as a function of frequency by solving Eq. (43) that is a
polynomial equation of the third degree on k2:
The developed equivalent model and the full numerical model using poro-elastic elements

are compared in Fig. 4, in the case described in Section 3 where viscoelastic dissipation is
dominating. This is also the case where shear is the most important in the porous layer due
to its large thickness. The porous layer is of a 5 cm thick and corresponds to the stiff material
ðE2 ¼ 400 kPa; Z2 ¼ 0:15Þ with airflow resistivity s ¼ 5000 N s m	4: Characteristics of the
equivalent plate are first calculated for the given configuration and frequency range. Then they
are introduced as properties of a single plate. Equivalent loss factor is given by the ratio of the
imaginary and the real part of the corrected bending rigidity Csðk2Þ D12:
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The RKU model is found insufficient for the plate–foam configuration: damping and
eigenfrequencies are overestimated. The proposed equivalent model gives a good estimation of
mean quadratic velocity of the plate and global loss factor for the first three modes.
Comparisons have not been performed for higher modes because of the computational cost of
the poro-elastic finite element method. However it can be seen that the equivalent plate
model tends to underestimate damping as frequency increases. One reason is the increase of
viscous forces along with frequency. This shows the limitation of the present model to the
low-frequency range.

5. Conclusion

Partition of dissipated and reactive powers is presented according to the 3-D formulation
coupling elastic and poro-elastic elements. Dissipation analysis has been performed in the
low- frequency range for a two-layered structure comprising a porous layer bonded onto a
plate. It shows that viscous and viscoelastic dissipations dominate. According to Okuno
and Kingsbury [8], viscous dissipation can be optimized by choosing a proper flow resistivity:
it becomes the major dissipation mechanism within soft materials. However for stiff
polymer foams, viscoelastic dissipation in the skeleton is widely dominating. Because
viscous dissipation requires tuning of flow resistivity as a function of thickness and frequency,
optimizing damping is most efficiently achieved by using the most viscoelastic and stiff porous
material. Determination of an optimized flow resistivity is rather connected to sound absorption
properties.
Consequently, an equivalent plate model accounting for the effect of the porous layer on the

plate has been derived: it includes shear in the porous layer and only viscoelasticity of the
skeleton. Good results have been obtained in comparison with the model using poro-elastic
elements for the three first modes, even for a thick porous layer.
The analysis performed on the two-layered structure demonstrated the validity of the method

based on power partition. Relying on a 3-D finite element formulation, this approach can be
applied to any structure associating acoustic, elastic and poro-elastic media. With the best
understanding of the behavior of such structures, suitable simplified models can be derived
avoiding the use of poro-elastic elements, well known for high computational cost.
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Appendix

Vb1 ¼
D1
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Z
S

@2w

@x2
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þ
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þ2n1
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@x@y

� �2

dS; ðA:1Þ
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dS; ðA:2Þ

with the bending rigidities

D1 ¼
E1

1	 n21

Z z1

	z1

z2 dz ¼
E1h

3
1

12ð1	 n21Þ
; ðA:3Þ

D2 ¼
E2

1	 n22

Z z2

z1

z2 dz ¼
E2

1	 n22

z32 	 z31
3

; ðA:4Þ

D3 ¼
E2

1	 n22

Z z2

z1

ðz 	 z1Þ
2 dz; D4 ¼

E2

1	 n22

Z z2

z1

zðz 	 z1Þ dz: ðA:5;A:6Þ

Vs2 ¼ 1
2

C2

Z
S

c2
x þ c2

y dS; ðA:7Þ

with the shear rigidity

C2 ¼ kh2E2=2ð1þ n2Þ ðA:8Þ

and k; accounting for the variation of the shear stresses and strains through the thickness,
taken to 5=6:
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